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eBPF: beyond userspace and kernelspace
Application to system and network visibility
Application to network programming
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Introduction: modern system and network programming

Typical problems

> My complex program has performance issues, how to debug this?
» | need visibility into the kernel behaviour: syscalls, network access, scheduling. ..

» | need flexible and fast packet processing: filtering, encapsulation, container
networking. ..

» | need to offload some hardware-related tasks in the kernel

Two main needs: system visibility and kernel programmability
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System / network programming models

Userspace

» Good: flexible, safe, easy to program, portable
» Bad: no direct access to hardware or kernel internal

Kernelspace
» Good: fast, direct access to hardware
» Bad: hard to program / debug / maintain, unsafe

Rigid interface between userspace and kernelspace: syscalls, basic
statistics (but also perf, kprobe)
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eBPF: the best of both worlds?
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Applicatic;n
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- Tracing
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- Networking

- Network Security

- Load Balancing

- Behavioral Security
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A simple BPF walkthrough: tcpdump

Capture network packets that match a given filter expression (man pcap-filter).

tcpdump "host 1.2.3.4 and udp port 53"

Work done in libpcap

» pcap_compile(string) — returns BPF bytecode

» classical Flex/Bison lexer, simple code generation
» bonus: run tcpdump -d to see the bytecode

» pcap_setfilter(bytecode) — loads BPF bytecode into kernel

» check bytecode validity
» setsockopt (socket, SOL_SOCKET, SO_ATTACH_FILTER, bytecode) on araw
socket

> filtering is now done in the kernel! BPF = Berkeley Packet Filter
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> filtering is now done in the kernel! BPF = Berkeley Packet Filter

This is classical BPF from around 30 years ago

McCanne, Steven, and Van Jacobson. "The BSD Packet Filter: A New Architecture for User-level Packet

Capture." In USENIX winter, vol. 46. 1993. 6/15



What's new with eBPF

New features with eBPF

» Higher performance (new instructions, JIT compiling)
» Many hooks throughout the kernel that can load eBPF programs
» Access to some kernel data structures and helper functions

» Communication with userspace through “maps”
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eBPF hooks
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eBPF static verification
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eBPF kernel helpers
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eBPF maps: communication with userspace
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System and network visibility

Reference
See work of Brendan Gregg: https://www.brendangregg.com + books

» bcc

» bpftrace
» ply

» pwru
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Network programming with XDP

XDP
Demo
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Conclusion

Conclusion

» Very flexible and powerful mechanism to safely run code in the kernel.

» Many different usages in the kernel, and increasing.

» High-level tools are very well documented and accessible

» The low-level infrastructure is complex, may be worth it for specific projects.
» Peak of activity since a few years: many projects, companies, tools. ..
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Pointers

References

> https://ebpf.io

» https://docs.cilium.io/en/latest/bpf/

» https://lwn.net/Kernel/Index/#Berkeley_Packet_Filter
» https://www.brendangregg.com
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