
An introduction to Linux kernel programming with eBPF.
Battlemesh v14, Roma

Baptiste Jonglez

September 19, 2022

1 / 15



Outline

Goal: understand eBPF basics and give pointers

eBPF: beyond userspace and kernelspace

Application to system and network visibility

Application to network programming

Conclusion

2 / 15



Introduction: modern system and network programming

Typical problems
I My complex program has performance issues, how to debug this?
I I need visibility into the kernel behaviour: syscalls, network access, scheduling. . .
I I need flexible and fast packet processing: filtering, encapsulation, container

networking. . .
I I need to offload some hardware-related tasks in the kernel

Two main needs: system visibility and kernel programmability

3 / 15



System / network programming models

Userspace
I Good: flexible, safe, easy to program, portable
I Bad: no direct access to hardware or kernel internal

Kernelspace
I Good: fast, direct access to hardware
I Bad: hard to program / debug / maintain, unsafe

Rigid interface between userspace and kernelspace: syscalls, basic
statistics (but also perf, kprobe)

4 / 15



eBPF: the best of both worlds?

Figure: Image from https://ebpf.io
5 / 15

https://ebpf.io


A simple BPF walkthrough: tcpdump
Capture network packets that match a given filter expression (man pcap-filter).
tcpdump "host 1.2.3.4 and udp port 53"

Work done in libpcap
I pcap_compile(string)→ returns BPF bytecode

I classical Flex/Bison lexer, simple code generation
I bonus: run tcpdump -d to see the bytecode

I pcap_setfilter(bytecode)→ loads BPF bytecode into kernel
I check bytecode validity
I setsockopt(socket, SOL_SOCKET, SO_ATTACH_FILTER, bytecode) on a raw

socket
I filtering is now done in the kernel! BPF = Berkeley Packet Filter

This is classical BPF from around 30 years ago
McCanne, Steven, and Van Jacobson. "The BSD Packet Filter: A New Architecture for User-level Packet
Capture." In USENIX winter, vol. 46. 1993.

6 / 15



A simple BPF walkthrough: tcpdump
Capture network packets that match a given filter expression (man pcap-filter).
tcpdump "host 1.2.3.4 and udp port 53"

Work done in libpcap
I pcap_compile(string)→ returns BPF bytecode

I classical Flex/Bison lexer, simple code generation
I bonus: run tcpdump -d to see the bytecode

I pcap_setfilter(bytecode)→ loads BPF bytecode into kernel
I check bytecode validity
I setsockopt(socket, SOL_SOCKET, SO_ATTACH_FILTER, bytecode) on a raw

socket
I filtering is now done in the kernel! BPF = Berkeley Packet Filter

This is classical BPF from around 30 years ago
McCanne, Steven, and Van Jacobson. "The BSD Packet Filter: A New Architecture for User-level Packet
Capture." In USENIX winter, vol. 46. 1993.

6 / 15



What’s new with eBPF

New features with eBPF
I Higher performance (new instructions, JIT compiling)
I Many hooks throughout the kernel that can load eBPF programs
I Access to some kernel data structures and helper functions
I Communication with userspace through “maps”

7 / 15



eBPF hooks

Figure: Image from https://ebpf.io
8 / 15

https://ebpf.io


eBPF static verification

Figure: Image from https://ebpf.io

9 / 15

https://ebpf.io


eBPF kernel helpers

Figure: Image from https://ebpf.io

10 / 15

https://ebpf.io


eBPF maps: communication with userspace

Figure: Image from https://ebpf.io

11 / 15

https://ebpf.io


System and network visibility

Reference
See work of Brendan Gregg: https://www.brendangregg.com + books

Demo time
I bcc
I bpftrace
I ply
I pwru

12 / 15

https://www.brendangregg.com


Network programming with XDP

XDP
Demo

13 / 15



Conclusion

Conclusion
I Very flexible and powerful mechanism to safely run code in the kernel.
I Many different usages in the kernel, and increasing.
I High-level tools are very well documented and accessible
I The low-level infrastructure is complex, may be worth it for specific projects.
I Peak of activity since a few years: many projects, companies, tools. . .

14 / 15



Pointers

References
I https://ebpf.io
I https://docs.cilium.io/en/latest/bpf/
I https://lwn.net/Kernel/Index/#Berkeley_Packet_Filter
I https://www.brendangregg.com

15 / 15

https://ebpf.io
https://docs.cilium.io/en/latest/bpf/
https://lwn.net/Kernel/Index/#Berkeley_Packet_Filter
https://www.brendangregg.com

	eBPF: beyond userspace and kernelspace
	Application to system and network visibility
	Application to network programming
	Conclusion

