An introduction to Linux kernel programming with eBPF.

Battlemesh v14, Roma

Baptiste Jonglez

September 19, 2022

1/15

Outline

Goal: understand eBPF basics and give pointers

eBPF: beyond userspace and kernelspace
Application to system and network visibility
Application to network programming

Conclusion

2/15

Introduction: modern system and network programming

Typical problems

> My complex program has performance issues, how to debug this?
» | need visibility into the kernel behaviour: syscalls, network access, scheduling. ..

» | need flexible and fast packet processing: filtering, encapsulation, container
networking. ..

» | need to offload some hardware-related tasks in the kernel

Two main needs: system visibility and kernel programmability

3/15

System / network programming models

Userspace

» Good: flexible, safe, easy to program, portable
» Bad: no direct access to hardware or kernel internal

Kernelspace
» Good: fast, direct access to hardware
» Bad: hard to program / debug / maintain, unsafe

Rigid interface between userspace and kernelspace: syscalls, basic
statistics (but also perf, kprobe)

4/15

eBPF: the best of both worlds?

Use
Cases

User
Space

Kernel

Networking

HeBPF

Projects

HeBPF

SDKs

W eBPF

Kernel Runtime

Security Observability &

Tracing

b'¢ C% Falco

ki

G- GOGC®

Verifier & JIT (65
Runtime
Maps
A -
Kernel Helper API 9 J

Figure: Image from https://ebpf.io

HeBPF

Applicatic;n

HeBPF

- Tracing
- Profiling
- Monitoring

- Observability

- Security Controls

- Networking

- Network Security

- Load Balancing

- Behavioral Security

5/15

https://ebpf.io

A simple BPF walkthrough: tcpdump

Capture network packets that match a given filter expression (man pcap-filter).

tcpdump "host 1.2.3.4 and udp port 53"

Work done in libpcap

» pcap_compile(string) — returns BPF bytecode

» classical Flex/Bison lexer, simple code generation
» bonus: run tcpdump -d to see the bytecode

» pcap_setfilter(bytecode) — loads BPF bytecode into kernel

» check bytecode validity
» setsockopt (socket, SOL_SOCKET, SO_ATTACH_FILTER, bytecode) on araw
socket

> filtering is now done in the kernel! BPF = Berkeley Packet Filter

6/15

A simple BPF walkthrough: tcpdump

Capture network packets that match a given filter expression (man pcap-filter).

tcpdump "host 1.2.3.4 and udp port 53"

Work done in libpcap

» pcap_compile(string) — returns BPF bytecode

» classical Flex/Bison lexer, simple code generation
» bonus: run tcpdump -d to see the bytecode

» pcap_setfilter(bytecode) — loads BPF bytecode into kernel

» check bytecode validity
» setsockopt (socket, SOL_SOCKET, SO_ATTACH_FILTER, bytecode) on araw
socket

> filtering is now done in the kernel! BPF = Berkeley Packet Filter

This is classical BPF from around 30 years ago

McCanne, Steven, and Van Jacobson. "The BSD Packet Filter: A New Architecture for User-level Packet

Capture." In USENIX winter, vol. 46. 1993. 6/15

What's new with eBPF

New features with eBPF

» Higher performance (new instructions, JIT compiling)
» Many hooks throughout the kernel that can load eBPF programs
» Access to some kernel data structures and helper functions

» Communication with userspace through “maps”

7/15

eBPF hooks

Process Process
HeBPF

write() read() sendmsg() recvmsg()
Syscall Syscall
eBPF eBPF
v v |

[File Descriptor] Sockets ﬁeap\p
VFS ﬁeam; TCP/IP @'eB;F
[Block Device] [Network Device]
1 1
HeBPF 2BPF
Storage % Network]
— HeBPF

Figure: Image from https://ebpf.io

Linux
Kernel

8/15

https://ebpf.io

eBPF static verification

Process [Process J

sendmsg() A recvmsg()

Syscall

> W eBPF
v
§ O [Sockets]
C
20¥ TCP/IP
E QL) == Program [
— N == Program [Network Device]

[ﬁ‘eBPF JIT Compiler J]

Figure: Image from https://ebpf.io

9/15

https://ebpf.io

eBPF kernel helpers

[Process J

sendmsg() recvmsg()
Syscall
W eBPF
v |
[Sockets]

[...1 ‘
num = bpf_get_ prandom u32(); ®eBpF TCP/IP

[...1 [

Linux
Kernel

Network Device]

Figure: Image from https://ebpf.io

10/15

https://ebpf.io

eBPF maps: communication with userspace

Process [Process ’

A

sendmsg() recvmsg()

Syscall 5V5C3“

ﬁ'EBPF

' N
p [Sockets]
| eBPF
Maps <_‘_> HeBPF TCP/IP

[Network Device]

Linux
Kernel

Figure: Image from https://ebpf.io

1/15

https://ebpf.io

System and network visibility

Reference
See work of Brendan Gregg: https://www.brendangregg.com + books

» bcc

» bpftrace
» ply

» pwru

12/15

https://www.brendangregg.com

Network programming with XDP

XDP
Demo

13/15

Conclusion

Conclusion

» Very flexible and powerful mechanism to safely run code in the kernel.

» Many different usages in the kernel, and increasing.

» High-level tools are very well documented and accessible

» The low-level infrastructure is complex, may be worth it for specific projects.
» Peak of activity since a few years: many projects, companies, tools. ..

14/15

Pointers

References

> https://ebpf.io

» https://docs.cilium.io/en/latest/bpf/

» https://lwn.net/Kernel/Index/#Berkeley_Packet_Filter
» https://www.brendangregg.com

15/15

https://ebpf.io
https://docs.cilium.io/en/latest/bpf/
https://lwn.net/Kernel/Index/#Berkeley_Packet_Filter
https://www.brendangregg.com

	eBPF: beyond userspace and kernelspace
	Application to system and network visibility
	Application to network programming
	Conclusion

