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Introduction: modern system and network programming

Typical problems
I My complex program has performance issues, how to debug this?
I I need visibility into the kernel behaviour: syscalls, network access, scheduling. . .
I I need flexible and fast packet processing: filtering, encapsulation, container

networking. . .
I I need to offload some hardware-related tasks in the kernel

Two main needs: system visibility and kernel programmability
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System / network programming models

Userspace
I Good: flexible, safe, easy to program, portable
I Bad: no direct access to hardware or kernel internal

Kernelspace
I Good: fast, direct access to hardware
I Bad: hard to program / debug / maintain, unsafe

Rigid interface between userspace and kernelspace: syscalls, basic
statistics (but also perf, kprobe)
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eBPF: the best of both worlds?

Figure: Image from https://ebpf.io
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A simple BPF walkthrough: tcpdump
Capture network packets that match a given filter expression (man pcap-filter).
tcpdump "host 1.2.3.4 and udp port 53"

Work done in libpcap
I pcap_compile(string)→ returns BPF bytecode

I classical Flex/Bison lexer, simple code generation
I bonus: run tcpdump -d to see the bytecode

I pcap_setfilter(bytecode)→ loads BPF bytecode into kernel
I check bytecode validity
I setsockopt(socket, SOL_SOCKET, SO_ATTACH_FILTER, bytecode) on a raw

socket
I filtering is now done in the kernel! BPF = Berkeley Packet Filter

This is classical BPF from around 30 years ago
McCanne, Steven, and Van Jacobson. "The BSD Packet Filter: A New Architecture for User-level Packet
Capture." In USENIX winter, vol. 46. 1993.
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What’s new with eBPF

New features with eBPF
I Higher performance (new instructions, JIT compiling)
I Many hooks throughout the kernel that can load eBPF programs
I Access to some kernel data structures and helper functions
I Communication with userspace through “maps”
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eBPF hooks

Figure: Image from https://ebpf.io
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eBPF static verification

Figure: Image from https://ebpf.io
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eBPF kernel helpers

Figure: Image from https://ebpf.io
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eBPF maps: communication with userspace

Figure: Image from https://ebpf.io
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System and network visibility

Reference
See work of Brendan Gregg: https://www.brendangregg.com + books

Demo time
I bcc
I bpftrace
I ply
I pwru
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Network programming with XDP

XDP
Demo
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Conclusion

Conclusion
I Very flexible and powerful mechanism to safely run code in the kernel.
I Many different usages in the kernel, and increasing.
I High-level tools are very well documented and accessible
I The low-level infrastructure is complex, may be worth it for specific projects.
I Peak of activity since a few years: many projects, companies, tools. . .
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Pointers

References
I https://ebpf.io
I https://docs.cilium.io/en/latest/bpf/
I https://lwn.net/Kernel/Index/#Berkeley_Packet_Filter
I https://www.brendangregg.com
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