Intr	od.	uctu	$^{\circ}$ n
	ou	ucu	

Network Coding in Wireless Mesh Networks Save Airtime by Mashing Packets

Martin Hundebøll

Department of Electronic Systems, Aalborg University

March 30th, 2012

4 □ ▷ ▲ ⓓ ▷ ▲ ≧ ▷ ▲ ≧ ▷ ▲ ≧ ▷ ♀ Q (Department of Electronic Systems, Aalborg University

Martin Hundebøll

Introduction (1)

Master thesis on network coding in mesh networks:

- Inspired by the COPE coding scheme from MIT CSAIL¹.
- Integrated network coding in batman-adv.
- Performance evaluated in a real wireless network.
- Working title: CATWOMAN (Coding Applied To Wireless On Mobile Ad-hoc Networks).

¹S. Katti et al., XORs in The Air: Practical Wireless Network Coding < □ > < □ > < □ > < ≡ > < ≡ > = = <

Introduction (2)

PhD to continue the work:

- Contribute with code to batman-adv.
- Build a static test-bed and mesh-usbs.
- Implement other concepts from Network Coding (RLNC).

Network Coding Basics: XOR'ing Data

Basic Principle of Network Coding

Let network nodes process and combine packets, instead of simply forwarding them.

Simple XOR example:

 $(P_1 \otimes P_2) \otimes P_2 = P_1$

Martin Hundebøll

The Alice and Bob Topology - Without NC

- Node A sends packet 1 to node B.
- Node *B* sends packet 2 to node *A*.
- They both relay traffic through node R.

Martin Hundebøll

Department of Electronic Systems, Aalborg University

The Alice and Bob Topology - With NC

- Node A sends packet 1 to node B.
- Node *B* sends packet *2* to node *A*.
- Node R combines packet 1 and 2.

The X Topology

- Node A sends packet 1 to node D.
- Node *B* sends packet 2 to node *C*.
- They both relay traffic through *R*.
- Node C overhears packet 1.
- Node D overhears packet 2.

Martin Hundebøll

Test Network

Three nodes placed in large atrium on campus.

Martin Hundebøll

Department of Electronic Systems, Aalborg University

UDP Traffic (1)

- ▲日本 ▲国本 ▲国本 ▲国本 三国 - ろんの

Department of Electronic Systems, Aalborg University

Martin Hundebøll

UDP Traffic (2)

XOR is not that expensive...

しょう 山田 えいかん しゃ

Martin Hundebøll

Network Coding in Wireless Mesh Networks

Department of Electronic Systems, Aalborg University

TCP Traffic

Department of Electronic Systems, Aalborg University

Martin Hundebøll

Status

Benefits:

- Coding works
- Throughput gain for UDP
- Little gain for TCP
- XOR is cheap enough

Drawbacks:

- Increased delay when not congested.
- High code complexity.
- "Random data" in the air.

Feedback

Questions, comments, ideas, notes of caution?

Martin Hundebøll

Department of Electronic Systems, Aalborg University