

A UDP-based

multipath application:

mpmosh

Matthieu Boutier
Juliusz Chroboczek

Laboratoire PPS - Université Paris Diderot
boutier@pps.univ-paris-diderot.fr

6 August 2015
Wireless Battle
of the Mesh v8

remote

Multihoming, multipath

2

Internet
core

ISP 1host

Network
(source-specific)

ISP 2
a

1
 ∈ ISP 1

a
2
 ∈ ISP 2

path of outgoing
packets selected by
source address
(local host choice)

path of incoming
packets selected by
destination address
(remote host choice)

→ higher layers can do multipath:
● transport (MPTCP)
● application

Multipath TCP

3

Application (7)
Transport (4)
Network (3)
…

→

Everything works out-of-the box
with source-specific routing:

→ (just rebuild your kernel…)

● Compatible multipath replacement of TCP

● provides reliability,
● provides performances (load balancing).

Multipath at application layer:
motivations

4

Application (7)
Transport (4)
Network (3)
…

→

Advantages of the application layer:

● More flexibility: choose what to retransmit,
● Keep control on the traffic sent,
● Be smarter: optimize delay, throughput,…

(application dependant problem)
● Experimenting new stuff,

● (don't need to rebuild your kernel!)

But (MP)TCP will be clever at your place:

● retransmissions,
● sends keepalives, and

may timeout the connection,
● optimizes throughput,

can't be tweaked for a particular application.

Multipath application with UDP

5

It is possible with:

sendmsg

Now, a few details…

The mobile shell (mosh)
Keith Winstein

6

Mosh is a « replacement for SSH » (mosh.mit.edu)

Mosh is a lightweight interactive application.

Mosh is robust:

→ allows roaming,
(client address or port switching)

→ supports intermittent connectivity,
(will not timeout without your consent)

→ resilient to packet loss
(mosh doesn't care)

Mosh in a multipath environment

7

Mosh makes no differences between paths:
→ 3G is as good as the fiber (eh!)

Mosh will not roam if the address is not gone
→ even if there is no more connection

Mosh uses one socket, and one remote address: it
will not rebind its socket to a different server's
address.

→ no IPv4 / IPv6 roaming

Mosh will not try to increase its performances
with multiple paths

→ two bad paths may be combined

a
1
 ∈ ISP 1

a
2
 ∈ ISP 2

3G (> 300ms)

Fiber

Mosh: an interactive application

8

Objective: minimize latency (RTT).

MP-mosh measures the RTT of the different
paths using probes.

MP-mosh distinguish 2 kinds of packets:

● data packets: contains actual mosh data,
(transit on The selected path)

● probes: only used for path estimation.
(transit on other paths)

data path

probe
paths

Mosh already provides classical RTT computation. MP-mosh uses the
same mechanism with probes.

The RTT never decreases !!!

9

The RTT doesn't decrease when the connection is lost: if the
best path break, all data packets will be lost!

● evaluate the RTO (Retransmission TimeOut) as in TCP,

● based on this, evaluate the idle time,

● the remote may delayed acknowledgements,
(takes this into account)

● integrate this to the event-loop.

Probes have a little overhead: 9 B/s for idle paths, 180 B/s max on active paths.

Mosh: a lightweight application

10

« Why not just duplicating data on all paths? »

→ increase performances on lossy paths,

→ increase useless overhead on good paths,
(I disagree to pay for nothing)

MP-mosh evaluates path loss ratio:

● uses a slicing window (64 packets),

● differentiates loss from reordering,

● sends back loss ratio to the remote peer.

Then duplicates on “some” paths.

data paths
(duplicate)

probe
paths

data paths
(duplicate)

MP-mosh sending procedure

11

SRTT + idle time 10ms 200ms 200ms …
outgoing loss ratio 42% 12% 19% …
expected loss ratio 42% 5% 0% …

sending data sending probes

probe
paths

data paths
(duplicate)

Conclusion

12

MP-mosh is an application designed for
host-centric multihomed networks,
with source-specific routing.

MP-mosh uses (very) lightweight probes estimate
the RTT and loss ratio of each paths
and duplicates to achieve a minimum reliability.

Perhaps a good basis for a library, but:
what if duplicated packets goes to the same bottleneck?
what should we change for peer to peer applications?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

