

Source-specific routing
for

multihoming (multi-gateways)
in

wireless mesh networks

Matthieu Boutier
Juliusz Chroboczek

Laboratoire PPS - Université Paris Diderot
boutier@pps.univ-paris-diderot.fr

5 August 2015
Wireless Battle
of the Mesh v8

Multihoming

2

Multihomed hosts

Multihomed network
(mutli-gateways in
mesh terminology)

Home network,
Enterprise network,

Mesh network…

Orange

Free

Whatever ISP DSL,
Fiber,
Satellite,
…

We want Multihoming

3

One gateway
is not always
enough!

Multihoming is difficult

4

Multihoming provides multiple paths to the Internet:
→ reliability,
→ load balancing possibilities.

Problems are:
→ How to achieve reliability and performances,

(performances: load balancing)
→ How to keep connections alive (TCP).

G2G1

Classical Multihoming

5

Acquire a PI prefix (Provider Independent addresses)

G2G1
Advantages:

● no configuration,
● reliability and partial load balancing,

(no incoming traffic control)
● use the classical protocols.

(routing, transport, application)

Flaws:
● Deal with ISP:

→ accept packets from the PI prefix,
→ announce the PI prefix to the Internet.

(one more entry in the global routing table)

Host-centric Multihoming

6

Each ISP provides PD addresses.

Each gateway is bound to the addresses provided by the ISP.

→ If a TCP flow switch gateways, it will collapse.

Recall that a TCP connection is identified by:
→ source: (src addr, src port),
→ destination: (dst addr, dst port)

G2G1

Many routing solutions exists!

Multihoming:
dedicated server

7

G2G1Advantages:
● Everything just works,
● use the classical protocols.

(routing, transport, application)

Flaws:
● single point of failure,
● require an external server.

Multihoming:
node-gateways tunnels

8

G2G1

Advantages:
● Everything just works,
● fine tune your preferred gateway,
● keep TCP connections: you can't switch.

Flaws:
● The chosen gateway is not necessarily the best one,
● TCP connections dropped on gateway failure,
● Need to configure the tunnels:

either manually or automatically.

Many active and deployed mesh network protocols
provide quite automatic configuration:

● OLSRv1 smart gateways,
● BMX6 Tunnel Announcements,
● Batman-adv gateways.

Back to the problem

9

We want:

● to route packets to some gateway,
● to keep TCP connections alive,

But:

● TCP can't survive if the flow roam, because the
source address associated to the gateway changes.

So we want:

● to keep the source address associated to that gateway.

G2G1

A natural idea…
from IPv6 multihoming

10

In IPv6, each ISP provides an infinite amount of
addresses to the network.

Idea:

● each host receive one IP per provider,

● route packets depending on their source address.

G2G1

a
1
, a

2

Classical routing in the Internet:
next-hop routing

11

routing table of A

destination next-hop
::/0 G1 or G2
… …

Router chooses, for each packet:
→ the next-hop
→ depending on the destination address only G2G1

A

or

A hack:
tunnels between gateways

12

G2G1

Advantages:
● use the classical protocols,
● keep TCP connections.

Flaws:
● much more configuration,
● TCP connections dropped on gateway failure,
● useless traffic between gateways.

(probably not suitable for mesh networks)

Uses classical routing protocol, with:
● tunnels between gateways,
● traffic engineering to choose the tunnel.

(match the source address of the packets)

In brief: good for centrally-administrated-10GByte-wired-networks.

Dwarfs
standing on the shoulders of giants

13

A (now) natural idea:
Source-specific routing

14

← source-specific
 route entry

destination source next-hop
::/0 2001:db8:1::/48 G1
::/0 2001:db8:2::/48 G2
… … …

Modest extension of next-hop routing:
same paradigm, same mechanisms

Router chooses, for each packet:
→ the next-hop
→ depending on the destination and source addresses

G2G1

A

and

routing table of A

Multihoming with
Source-specific routing

15

G2G1
Advantages:

● no configuration, just routing,
● keep TCP connections,
● (bonus) choose your paths!

Flaws:
● TCP connections dropped on gateway failure,
● Need to use a new routing protocol.

a
1
, a

2

Source-specific routing
implementations

16

Existing implementations (by date):

● OSPF (partial) ← by Markus Stenberg

● Babel ← by us (Matthieu Boutier and Juliusz Chroboczek)
(first real, complete, production quality implementation)

● IS-IS (IPv6 only) ←by David Lamparter & Christian Franke

● OLSR (IPv6 only) ← by Henning Rogge

Perhaps future implementations:

→ B.A.T.M.A.N., BMX6… ???? (this week ?)

Going through
Source-specific Babel

17

Source-specific routing is good for multihomed networks.

But it requires some changes:

● source-specific routing tables, (I will be boring for 2 minutes)

● compatible protocol extension,

● speaking to the kernel.

Need to choose the source address of outgoing packets.

18

Classic routing tables
and ambiguity

19

→

We choose the most specific prefix (longest match rule).
→ order induced by the inclusion.

These entries all match
the address 2001:db8:2::1

destination next-hop
2001:db8:2::/48 B
::/0 C

destination source next-hop
2001:db8:2::/48 ::/0 B
::/0 2001:db8:1::/48 C

Source-specific routing tables
and ambiguity

20

How to route (2001:db8:2::1, 2001:db8:1::1) ?
Neither entry is more specific than the other!

→ we no longer have a total order on entries matching a single packet.

x

packet's destination packet's source

Consensus: routing by destination first.

(and all routers MUST have the same behaviour, or persistent
routing loops occurs)

Source-specific Babel extension

21

Source-specific routing is good for multihomed networks.

We have seen how to interpret routing tables:
lexicographic order by destination first.

Extending Babel still needs:

● compatible protocol extension,

● speak to the kernel.

Need to choose the source address of outgoing packets.

Source-specific extension of Babel

22

(2001:db8:1::/48, 1)

classical Babel

(2001:db8:1::/48, ::/0, 1)
(::/0, 2001:db8:1::/48, 2)

source-specific Babel

destination metric next-hop
…:1::/48 1 NH 1

destination source metric next-hop
…:1::/48 ::/0 1 NH 1
::/0 …:1::/48 2 NH 2

Routes with source ::/0 are
announced as non-specific.

Complete interoperability
for non-specific routes,

We use 3 new TLVs.

source-specific routes silently
dropped by non-SS routers.

(not a problem with a SSR
backbone.)

Source-specific Babel: last step

23

Source-specific routing is good for multihomed networks.

We have seen how to interpret routing tables:
lexicographic order by destination first.

We have a backward compatible Babel extension, which computes
source-specific routing tables, such as:

Extending Babel still needs:

● to speak to the kernel.

Need to choose the source address of outgoing packets.

destination source next-hop
2001:db8:2::/48 0.0.0.0/0 B
0.0.0.0/0 2001:db8:1::/48 C

Routing protocol and
forwarding table

24

destination first behaviour
(our choice)

which behaviour ?
(kernel choice)

incremental changes:
(add, remove or change
a single entry)

RIB

FIB

Routing
daemon

forwarding
table

Disambiguation algorithm (idea)

25

RIB

FIB

destination first behaviour
(our choice)

whatever behaviour
(forwarding plane choice)

incremental
changes

disambiguation
algorithm

Main idea: for each ambiguity,
we maintain more specific entries
(kernel only)

Needed in IPv4 or

in IPv6 with
(not-so-)old Linux kernels.

Redistribution in Babel

26

RIB

FIB

● Automatic redistribution of
source-specific routes, using the
native API:

→ IPv6
→ recent kernels (> 3.11)

● Explicit configuration (filters):

→ new action: src-prefix
(only for redistribution)

redistribute […] src-prefix <prefix>

redistribute ip 0.0.0.0/0 eq 0 src-prefix 192.168.42.0/0

Entracte

27

Source-specific routing is good for multihomed networks.

We have seen how to interpret routing tables:
lexicographic order by destination first.

We have a backward compatible Babel extension, which computes
source-specific routing tables.

We have a working source-specific extension of Babel.
→ usable on “any” Linux kernel,
→ easily portable to support your favourite kernel,
→ Babel is The Only One able to deal with v4 and v6,
→ Active deployment in some homenet testbeds (opkg install hnet-full).

Babel does source-specific routing (main branch).

Need to choose the source address of outgoing packets.

Address selection problem

28

G2G1

a
1
, a

2

There is a RFC for that:

● RFC 6724 (obsoletes 3484),
→ both source and destination address

There has been some other works in this area:

● Happy eyeballs: Success with dual stack hosts,
→ try IPv4 & IPv6 simultaneously

● Shim6: but it's more than that,

● …
This is an open research area.

And it's broken in Linux for source-specific routes…

remote

Don't choose address: choose paths!

29

Internet
core

host

Network
(source-specific)

path of outgoing
packets selected by
source address
(local host choice)

path of incoming
packets selected by
destination address
(remote host choice)

→ higher layers can do multipath:
● transport (MPTCP)
● application

G1

G2

a
1
, a

2

Multipath TCP

30

Application (7)
Transport (4)
Network (3)
…

→
● Compatible multipath replacement of TCP

● provides reliability,
● provides performances (load balancing).

Everything works out-of-the box
with source-specific routing:

→ don't change the application,

→ just use TCP connections,

→ (just rebuild your kernel…)

Multipath at application layer

31

Application (7)
Transport (4)
Network (3)
…

→

Advantages:

● More flexibility (think retransmissions),

● Keep control on the traffic sent,

● Be smarter: optimize delay, throughput,…
(application dependant problem)

● (don't need to rebuild your kernel!)

Example: mp-mosh
(extends the mobile shell)

● probe paths,

● optimize RTT,

● may duplicate to
minimize loss ratio.

Multihoming:
Source-specific routing

32

G2G1
Advantages:

● no configuration, just routing,
● keep TCP connections,
● may achieve reliability,
● may achieve best end-to-end performances.

Flaws:
● Need multipath protocols,
● Need to use a new routing protocol.

a
1
, a

2

Conclusion

33

Source-specific routing is good for multihomed networks.

Babel is working production-quality source-specific protocol.
→ usable on Linux, easily portable, does v4 and v6,
→ used in practice.

Source-specific routing provides multipath opportunities:
Higher layers need mutlipath support:

→ use Multipath TCP,
→ let design new multipath applications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

