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Multihoming
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Multihomed hosts

Multihomed network
(mutli-gateways in
mesh terminology)

Home network,
Enterprise network,

Mesh network…

Orange

Free

Whatever ISP DSL,
Fiber,
Satellite,
…



  

We want Multihoming
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One gateway
is not always
enough!



  

Multihoming is difficult
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Multihoming provides multiple paths to the Internet:
→ reliability,
→ load balancing possibilities.

Problems are:
→ How to achieve reliability and performances,

(performances: load balancing)
→ How to keep connections alive (TCP).

G2G1



  

Classical Multihoming
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Acquire a PI prefix (Provider Independent addresses)

G2G1
Advantages:

● no configuration,
● reliability and partial load balancing,

(no incoming traffic control)
● use the classical protocols.

(routing, transport, application)

Flaws:
● Deal with ISP:

→ accept packets from the PI prefix,
→ announce the PI prefix to the Internet.

(one more entry in the global routing table)



  

Host-centric Multihoming
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Each ISP provides PD addresses.

Each gateway is bound to the addresses provided by the ISP.

→ If a TCP flow switch gateways, it will collapse.

Recall that a TCP connection is identified by:
→ source: (src addr, src port),
→ destination: (dst addr, dst port)

G2G1

Many routing solutions exists!



  

Multihoming:
dedicated server
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G2G1Advantages:
● Everything just works,
● use the classical protocols.

(routing, transport, application)

Flaws:
● single point of failure,
● require an external server.



  

Multihoming:
node-gateways tunnels
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G2G1

Advantages:
● Everything just works,
● fine tune your preferred gateway,
● keep TCP connections: you can't switch.

Flaws:
● The chosen gateway is not necessarily the best one,
● TCP connections dropped on gateway failure,
● Need to configure the tunnels:

either manually or automatically.

Many active and deployed mesh network protocols 
provide quite automatic configuration:

● OLSRv1 smart gateways,
● BMX6 Tunnel Announcements,
● Batman-adv gateways.



  

Back to the problem
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We want:

● to route packets to some gateway,
● to keep TCP connections alive,

But:

● TCP can't survive if the flow roam, because the 
source address associated to the gateway changes.

So we want:

● to keep the source address associated to that gateway.

G2G1



  

A natural idea…
from IPv6 multihoming
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In IPv6, each ISP provides an infinite amount of 
addresses to the network.

Idea:

● each host receive one IP per provider,

● route packets depending on their source address.

G2G1
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Classical routing in the Internet:
next-hop routing
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routing table of A

destination next-hop
::/0 G1 or G2
… …

Router chooses, for each packet:
→ the next-hop
→ depending on the destination address only G2G1

A

or



  

A hack:
tunnels between gateways
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G2G1

Advantages:
● use the classical protocols,
● keep TCP connections.

Flaws:
● much more configuration,
● TCP connections dropped on gateway failure,
● useless traffic between gateways.

(probably not suitable for mesh networks)

Uses classical routing protocol, with:
● tunnels between gateways,
● traffic engineering to choose the tunnel.

(match the source address of the packets)

In brief: good for centrally-administrated-10GByte-wired-networks.



  

Dwarfs
standing on the shoulders of giants
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A (now) natural idea:
Source-specific routing
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← source-specific
    route entry

destination source next-hop
::/0 2001:db8:1::/48 G1
::/0 2001:db8:2::/48 G2
… … …

Modest extension of next-hop routing:
same paradigm, same mechanisms

Router chooses, for each packet:
→ the next-hop
→ depending on the destination and source addresses

G2G1

A

and

routing table of A



  

Multihoming with
Source-specific routing
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G2G1
Advantages:

● no configuration, just routing,
● keep TCP connections,
● (bonus) choose your paths!

Flaws:
● TCP connections dropped on gateway failure,
● Need to use a new routing protocol.

a
1
, a

2



  

Source-specific routing
implementations
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Existing implementations (by date):

● OSPF (partial) ← by Markus Stenberg

● Babel ← by us (Matthieu Boutier and Juliusz Chroboczek)
(first real, complete, production quality implementation)

● IS-IS (IPv6 only) ←by David Lamparter & Christian Franke

● OLSR (IPv6 only) ← by Henning Rogge

Perhaps future implementations:

→ B.A.T.M.A.N., BMX6… ????  (this week ?)



  

Going through
Source-specific Babel
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Source-specific routing is good for multihomed networks.

But it requires some changes:

● source-specific routing tables, (I will be boring for 2 minutes)

● compatible protocol extension,

● speaking to the kernel.

Need to choose the source address of outgoing packets.



  
18



  

Classic routing tables
and ambiguity
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→

We choose the most specific prefix (longest match rule).
→ order induced by the inclusion.

These entries all match
the address 2001:db8:2::1

destination next-hop
2001:db8:2::/48 B
::/0 C



  

destination source next-hop
2001:db8:2::/48 ::/0 B
::/0 2001:db8:1::/48 C

Source-specific routing tables
and ambiguity

20

How to route (2001:db8:2::1, 2001:db8:1::1) ?
Neither entry is more specific than the other!

→ we no longer have a total order on entries matching a single packet.

x

packet's destination packet's source

Consensus: routing by destination first.

(and all routers MUST have the same behaviour, or persistent 
routing loops occurs)



  

Source-specific Babel extension
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Source-specific routing is good for multihomed networks.

We have seen how to interpret routing tables:
lexicographic order by destination first.

Extending Babel still needs:

● compatible protocol extension,

● speak to the kernel.

Need to choose the source address of outgoing packets.



  

Source-specific extension of Babel
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(2001:db8:1::/48, 1)

classical Babel

(2001:db8:1::/48, ::/0, 1)
(::/0, 2001:db8:1::/48, 2)

source-specific Babel

destination metric next-hop
…:1::/48 1 NH 1

destination source metric next-hop
…:1::/48 ::/0 1 NH 1
::/0 …:1::/48 2 NH 2

Routes with source ::/0 are
announced as non-specific.

Complete interoperability
for non-specific routes,

We use 3 new TLVs.

source-specific routes silently 
dropped by non-SS routers.

(not a problem with a SSR 
backbone.)



  

Source-specific Babel: last step
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Source-specific routing is good for multihomed networks.

We have seen how to interpret routing tables:
lexicographic order by destination first.

We have a backward compatible Babel extension, which computes 
source-specific routing tables, such as:

Extending Babel still needs:

● to speak to the kernel.

Need to choose the source address of outgoing packets.

destination source next-hop
2001:db8:2::/48 0.0.0.0/0 B
0.0.0.0/0 2001:db8:1::/48 C



  

Routing protocol and
forwarding table
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destination first behaviour
(our choice)

which behaviour ?
(kernel choice)

incremental changes:
(add, remove or change
a single entry)

RIB

FIB

Routing
daemon

forwarding
table



  

Disambiguation algorithm (idea)

25

RIB

FIB

destination first behaviour
(our choice)

whatever behaviour
(forwarding plane choice)

incremental
changes

disambiguation
algorithm

Main idea: for each ambiguity,
we maintain more specific entries
(kernel only)

Needed in IPv4 or

in IPv6 with
(not-so-)old Linux kernels.



  

Redistribution in Babel
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RIB

FIB

● Automatic redistribution of 
source-specific routes, using the 
native API:

→ IPv6
→ recent kernels (> 3.11)

● Explicit configuration (filters):

→ new action: src-prefix
(only for redistribution)

redistribute […] src-prefix <prefix>

redistribute ip 0.0.0.0/0 eq 0 src-prefix 192.168.42.0/0



  

Entracte
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Source-specific routing is good for multihomed networks.

We have seen how to interpret routing tables:
lexicographic order by destination first.

We have a backward compatible Babel extension, which computes 
source-specific routing tables.

We have a working source-specific extension of Babel.
→ usable on “any” Linux kernel,
→ easily portable to support your favourite kernel,
→ Babel is The Only One able to deal with v4 and v6,
→ Active deployment in some homenet testbeds (opkg install hnet-full).

Babel does source-specific routing (main branch).

Need to choose the source address of outgoing packets.



  

Address selection problem
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G2G1

a
1
, a

2

There is a RFC for that:

● RFC 6724 (obsoletes 3484),
→ both source and destination address

There has been some other works in this area:

● Happy eyeballs: Success with dual stack hosts,
→ try IPv4 & IPv6 simultaneously

● Shim6: but it's more than that,

● …
This is an open research area.

And it's broken  in Linux for source-specific routes…



  

remote

Don't choose address: choose paths!

29

Internet
core

host

Network
(source-specific)

path of outgoing 
packets selected by 
source address 
(local host choice)

path of incoming 
packets selected by 
destination address 
(remote host choice)

→ higher layers can do multipath:
● transport (MPTCP)
● application

G1

G2

a
1
, a

2



  

Multipath TCP
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Application (7)
Transport (4)
Network (3)
…

→ 
● Compatible multipath replacement of TCP

● provides reliability,
● provides performances (load balancing).

Everything works out-of-the box 
with source-specific routing:

→ don't change the application,

→ just use TCP connections,

→ (just rebuild your kernel…)



  

Multipath at application layer
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Application (7)
Transport (4)
Network (3)
…

→ 

Advantages:

● More flexibility (think retransmissions),

● Keep control on the traffic sent,

● Be smarter: optimize delay, throughput,…
(application dependant problem)

● (don't need to rebuild your kernel!)

Example: mp-mosh
(extends the mobile shell)

● probe paths,

● optimize RTT,

● may duplicate to 
minimize loss ratio.



  

Multihoming:
Source-specific routing
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G2G1
Advantages:

● no configuration, just routing,
● keep TCP connections,
● may achieve reliability,
● may achieve best end-to-end performances.

Flaws:
● Need multipath protocols,
● Need to use a new routing protocol.

a
1
, a

2



  

Conclusion
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Source-specific routing is good for multihomed networks.

Babel is working production-quality source-specific protocol.
→ usable on Linux, easily portable, does v4 and v6,
→ used in practice.

Source-specific routing provides multipath opportunities:
Higher layers need mutlipath support:

→ use Multipath TCP,
→ let design new multipath applications
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