
Submission Slide 1

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Making Wifi Fast

Date: 2015-08-7

Name Affiliations Address Phone Email

Dave Taht Annoyer
 -in-Chief!
Bufferbloat.net

2104 W First
Street
Apt 2002
Ft Myers, FL,
33901

dave.taht@gmail.com

Submission Slide 2

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Overview

● On Reducing induced latency on wifi
● How Codel and FQ_Codel work

Submission Slide 3

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Today – delay and bandwidth in wifi
are inversely correlated

Submission Slide 4

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Today – delay and bandwidth in wifi
are inversely correlated

We can fix this finally!

The rate goes down

Latency goes up!

Rate goes up

Latency goes down!

The rate goes down
Latency goes up!

Rate goes up

Latency goes down!

Submission Slide 5

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Induced Latency under load
of wifi at 40Mbits/sec

Intrinsic latency

Buried in the ath9k driver

Source: The good, the bad, and the Wifi:
http://www.cs.kau.se/tohojo/modern-aqms/

FIFO

fq_codel

Submission Slide 6

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Abstract
 Reducing Latency and Jitter in Wifi

Bandwidth does not equal “Speed”. Bandwidth = Capacity/interval. Real “speed”, in
human terms, is measured by the amount of latency (lag), between an action and a
response. In the quest for headline bandwidth in new network standards the industry has
lost track of what real speed means.

The presence of large, unmanaged network buffers, primarily across the edge devices of
the Internet. In wifi, especially, with wildly variable rates, shedding load to match the
available bandwidth, doesn't presently happen, leading to huge delays for much wireless
traffic, when under load.

The lag sources in wifi are by no means limited to bufferbloat, but buried deep in stacks
that did not successfully absorb wireless-n concepts in the first place.

This talk goes into the problems that the large network queuing delays (bufferbloat)
causes. It touches upon some new algorithms, now deployed and in the process of
standardization, that produce enormous reductions in latency, and then details some
steps the make-wifi-fast project plans to take to address it, on WiFi.

Submission Slide 7

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Why am I here?
● IETF is not the place to work on WiFi
● Bufferbloat.net is starting up a new project, “make-wifi-fast” leveraging

CeroWrt and OpenWRT – and any other OS-es we can find!

“The use of open source software to promote broad adoption and use of new
technology is now well demonstrated... The CeroWrt/OpenWrt effort could
have a similar effect.” – Vint Cerf, “Bufferbloat and other Internet Challenges”

● We fixed ethernet, cable, fiber, and DSL already.
● Experiences thus far with 802.11ac have been dismal.
● Perhaps working with everyone that cares about is the right thing to

find and fix all the sources of latency and jitter in the Wifi architecture.
● It would be nice to get a grip on what's going on in 802.11ax, ak, etc

http://ieeexplore.ieee.org/stamp/stamp.jsp?reload=true&tp=&arnumber=6886125
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6886125

Submission Slide 8

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

When do you drop packets?
(Excessive retries Brussels ↔ Paris)

● --- lwn.net ping statistics ------ lwn.net ping statistics ---
● 623 packets transmitted, 438 received, 623 packets transmitted, 438 received,
● 29% packet loss, time 637024ms 29% packet loss, time 637024ms
● rtt min/avg/max/mdev = rtt min/avg/max/mdev =

265.720/1094.646/14869.938/1730.424 ms, pipe 15265.720/1094.646/14869.938/1730.424 ms, pipe 15

Submission Slide 9

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

About Bufferbloat.net
An all-volunteer organization providing wikis, project management, and email lists for those
interested in speeding up the internet.

We've:

Gathered together experts to tackle networking queue management and system problem(s),
particularly those that affect wireless networks, home gateways, and edge routers.

Spread the word to correct basic assumptions regarding goodput and good buffering on the
laptop, home gateway, core routers and servers.

Produced tools to demonstrate and diagnose the problems.

Led a major advance in network Queueing theory

Did and continue to do experiments in advanced congestion management.

Produced patches to popular operating systems at the device driver, queuing, and TCP/ip layers
to dramatically reduce latency for many devices.

Developed reference devices and firmware to push the state of the art forward, for everyone.

Submission Slide 10

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Bufferbloat.net Projects

● Bloat – general site for bufferbloat info
● Codel and fq_codel: Algos for shedding load
● CeroWrt – Reference router for the debloaters
● Make-Wifi-Fast – Lowering lag on wifi

Submission Slide 11

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

100ms physical delay at start of test

500+ms induced delay after TCP ramps up!

You could be here with FQ+AQM

We are here, now

Potential Benefits of Fair/Flow Queuing and
 Active Queue Management on Internet Edge Gateways

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

2012: Codel concept shows promise in
adapting to varying link rates on WiFi

• Nominal 100 Mbps
link with rate changes,
buffer size of 830
packets

• 4 FTPs, 5 packmime
connections/sec

• Better than tail drop or
RED by a lot.ACM Queue: “Controlling Queue Delay”

– Kathie Nichols and Van Jacobson
http://queue.acm.org/detail.cfm?id=2209336

● See also: “Bufferbloat”
http://queue.acm.org/detail.cfm?id=2071893

• fq_codel: already
shown to work
decently on wireless
p2p links

http://queue.acm.org/detail.cfm?id=2209336

Submission Slide 13

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Why does Bufferbloat happen?

Submission Slide 14

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

● TCP will always fill the biggest buffer on the path
● As the delays get larger – congestion avoidance mode geometrically gets slower
● With CUBIC, the sawtooth looks more like an S-curve

http://staff.science.uva.nl/~delaat/netbuf/bufferbloat_BG-DD.pdf
(.5Mbit uplink)

It comes from TCP's bandwidth
probing behavior (TCP 101)

http://staff.science.uva.nl/~delaat/netbuf/bufferbloat_BG-DD.pdf

Submission Slide 15

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

And dramatic overbuffering,
everywhere

● Unmanaged buffers in network stacks
– Sized for the maximum bandwidth the device can

sustain

– Not managed for the actual bandwidths achieved

– Often behind proprietary firmware where it can't be
fixed.

– With things like packet aggregation providing illusory
gains on simple minded benchmarks but not real
traffic

Submission Slide 16

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Consequences of TCP's design

A single connection will fill any size buffer put in front of it at the path's
bottleneck, given time: adds one packet/ack to the buffer

Timely dropping or marking of packets is necessary for correct
operation of TCP on a saturated link.

Even IW4 is an issue at low bandwidths (e.g. VOIP over busy 802.11
network): do the math. Just "fixing" TCP does not fix the network.

Smarter queuing is essential. Congestion window is not shared
among connections (currently). Current web server/client behavior
means head of line blocking causes bad transients.

Sharing responsiveness is quadratic in delay. Elephant flows become
mammoth flows in the face of overbuffering.

Submission Slide 17

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

In a Web TCP transaction

SYN → SYN/ACK 1 RTT
SSL NEGOTIATION 2 RTTs

DATA REQUEST/Transfer – 1 RTT 10 packets
(90% of all web transactions are one IW10 burst)

FIN – FIN/ACK 1 RTT
CLOSE 1 packet

Only 1 TXOP in 10 can aggregate!
Excessive base RTT adds up!

Submission Slide 18

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Web Browsing is dependent on RTT
Page Load Time vs. RTT

• Page Load Time is sensitive to round-trip latency
• Google data shows 14x multiplier

• +200ms RTT = +2.8 seconds PLT

• Diminishing returns from increased data rate
• Page Load Time at 10 Mbps almost

indistinguishable from 6 Mbps
Source: SPDYEssentials, Roberto Peon & William Chan, Google Tech Talk, 12/8/11

Gaming, DNS, and VOIP
traffic are even more

sensitive to RTT!

Page Load Time vs. BW

Effective HTTP Throughput

Submission Slide 19

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Too much delay and you get layer 3
adding even more packets...

Submission Slide 20

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

The good news
● Bufferbloat is basically fixed on ethernet, cable, dsl, and

fiber, with the new algorithms (codel, fq_codel, pie) ,and
improvements in the Linux network stacks,
– 2-3 orders of magnitude reductions in network latency being

seen AND improvements in goodput

● Algos are now deployed in several products, and in
nearly every third party router firmware.

● Two algorithms are patent free and open sourced code
widely available for them

● Standardization activities in the IETF

Submission Slide 21

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Typical Latency with Load Today

Fiber

Cable (DOCSIS 2.0)ADSL

Wifi

Much of this latency comes from Queue Delay (bufferbloat)

Submission Slide 22

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Ex: 300ms excess latency on cable

Submission Slide 23

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Cut to ~10ms with fq_codel

Source:
http://burntchrome.blogspot.gr/2014_05_01_archive.htm
l

Submission Slide 24

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Web page load time wins

Video at: http://www.youtube.com/watch?v=NuHYOu4aAqg
From:
http://www.cablelabs.com/wp-content/uploads/2013/11/Active_Queue_Managemen
t_Algorithms_DOCSIS_3_0.pdf

http://www.youtube.com/watch?v=NuHYOu4aAqg
http://www.cablelabs.com/wp-content/uploads/2013/11/Active_Queue_Management_Algorithms_DOCSIS_3_0.pdf
http://www.cablelabs.com/wp-content/uploads/2013/11/Active_Queue_Management_Algorithms_DOCSIS_3_0.pdf

Submission Slide 25

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

unshaped fq_codeled
0

500

1000

1500

2000

2500

3000

3500

4000

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

www.google.com

Latency under load comparison

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Chrome Benchmark Web Page
completion time

during RRUL benchmark

 Drop tail vs nfq_codel

Submission Slide 26

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Linux TCP/AQM/FQ
 Advances: 2010-2014

● Linux 3.0: Proportional Rate Reduction
● Linux 3.3: Byte Queue Limits
● Linux 3.4 RED bug fixes & IW10 added & SFQRED
● Linux 3.5 Fair/Flow Queuing packet scheduling (fq_codel, codel)
● Linux 3.6 Stability improvements to fq_codel
● Linux 3.7 TCP small queues (TSQ)
● Linux 3.8 HTB breakage
● Linux 3.11 HTB fixed
● Linux 3.12 TSO/GSO improvements
● Linux 3.13 Host FQ + Pacing
● Linux 3.14 Pie added
● Linux 3.15 Change to microseconds from milliseconds throughout networking kernel
● Linux 3.17? Network Batching API
● The Linux stack is now mostly “pull through”, where it used to be “push”, and looks nothing like it did 4 years

ago.
● fq_codel now std on openwrt, fedora, arch (anything with systemd), many others

But: not much progress on wifi

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

IETF AQM Working Group Status

● AQM working group

https://datatracker.ietf.org/doc/charter-ietf-aqm/
● Pending drafts:
● http://snapon.lab.bufferbloat.net/~d/draft-taht-home-gateway-best-practices-00.html

● http://tools.ietf.org/html/draft-white-aqm-docsis-pie-00

● http://tools.ietf.org/html/rfc2309 Is beiing revised

● http://tools.ietf.org/html/draft-ietf-aqm-recommendation-03

● http://tools.ietf.org/id/draft-kuhn-aqm-eval-guidelines-00.txt

● http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00

● http://tools.ietf.org/html/draft-nichols-tsvwg-codel-02

● http://sandbox.ietf.org/doc/draft-baker-aqm-sfq-implementation/

https://datatracker.ietf.org/doc/charter-ietf-aqm/
http://snapon.lab.bufferbloat.net/~d/draft-taht-home-gateway-best-practices-00.html
http://tools.ietf.org/html/draft-white-aqm-docsis-pie-00
http://tools.ietf.org/html/rfc2309
http://tools.ietf.org/html/draft-ietf-aqm-recommendation-03
http://tools.ietf.org/id/draft-kuhn-aqm-eval-guidelines-00.txt
http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00
http://tools.ietf.org/html/draft-nichols-tsvwg-codel-02

Submission Slide 28

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

The bad news:
Latency problems on WiFi are not

just bufferbloat

Submission Slide 29

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

How to make WiFi truly faster on
stations and Access points?

● With new AQM and packet scheduling algorithms?
● With Packet aggregation?
● With EDCA scheduling?
● With 802.11e prioritization?
● Increasing numbers of stations and contending access points?
● Excessive low rate multicasts and retransmissions coming from mdns

and ipv6?
● With upcoming standards like 802.11ax?

? ?
● New project: MAKE-WIFI-FAST

https://lists.bufferbloat.net/listinfo/make-wifi-fast/

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Linux WiFi stack –
Planned fixes in make-wifi-fast

● Better Benchmarks and Tools
● Improve the minstrel rate selection algorithm

– Smarter Math

– Better aggregation awareness

– W/Power aware scheduling (minstrel-ht-blues) – Now kernel mainlined!

– Reducing retransmits & selective retransmit

● Rework the stack
– Per station queueing

– Single queue promotion to 802.11e

– MU-MIMO support

– Obsolete VO Queue

● Add rate control aware AQM/Fair Queuing Algorithms
– Codel, Pie, fq_pie

– Sort on dequeue

● Take advantage of new statistics and possibilities in new 802.11 standards
– And in the end, reduce induced latency by at least a factor of 10, and the carrying capabilities of the 802.11n MAC by at

least a factor of five.

Submission Slide 31

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Some useful tools for looking
at the Bufferbloat Problem

● Tcptrace and xplot.org and isochronous burst tests
● flent (by Toke Hoeiland-Joergensen)

– Standardized data format, 30+ network specific tests testing for latency under load, 20+ plot types, extensive support for batching and other
automation, usage of alternate TCP algorithms, in combination with other web and voip-like traffic.

● Linux Kernel mainline, Codel, fq_codel and pie in most distributions now (Redhat 7, ubuntu, debian, etc) – Cake in progress
● Cerowrt is dead, long live Openwrt!

– Was: Inexpensive actual router configurable with nearly every AQM and FQ algorithm using “SQM”

– Emulations of common CMTS and DSLAM behavior

– Results proven sane to 50mbits

– Most of cerowrt is already in openwrt “Barrier Breaker”.

● SQM (“Smart Queue Management”)
– Drop in replacement for wondershaper portable to all modern linuxes

– Uses fq_codel by default, pie, sfq, codel optionally

● Openwrt “Barrier Breaker”, ipfire, pfsense, other third party router firmwares have support also
● NS2 models of codel, sfq_codel, and pie in ns2 mainline
● NS3 models of codel, fq_codel, asymmetric edge networks, etc,

– From Google 2014 summer of code

– Codel in in September ns-3.21, sfq_codel in ns-3.22, December, 2014

– Wifi mac support, LTE, etc

All open source

Submission Slide 32

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Planned Rate selection
Improvements

● Minstrel-2 rate selection algorithm improvements
The minstrel rate selection algorithm was originally developed against wireless-g technologies in an era (2006) when competing access
points were far less prevalent. While updated significantly for wireless-n a thorough analysis has not been performed in the wide variety of
rates and modern conditions. Also, some new mathematical techniques have been developed since 2009 that might make for better rate
control overall. A new ns3 model will be developed to mirror these potential changes and a sample implementation produced for the ath9k
chipset (at minimum). Minstrel will do a much better job on aggregation and in MU-MIMO conditions.

● Power aware rate control and scheduling
It may be possible to do transmits at "just the right power" for the receiving station. Minstrel-Blues is now mainlined!

Full description: http://d-nb.info/106738460X/34

● Reducing retransmits
Retransmit attempts will move from counter based to a time and other workload based scheduler. This will help keep bad stations
from overwhelming the good, and reduce latencies overall. Losing more packets is fine in the pursuit of lower latency for all.

● Selective (re)transmit
Currently all Linux wifi drivers are dumb when it comes to retransmitting portions of an aggregate that fail, attempting to perfectly
transmit the entire aggregate. In the general case, not all packets need to be retransmitted - examples include all but the final tcp
ack in a flow, all but the last voip packet in a flow, and so on.

Submission Slide 33

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Per Station Queues is NEXT!

● Single queue promotion to 802.11e aggregates
● Per station queueing

The current structure of the linux wifi stack exposes only the 802.11e wifi queues, not multicast, and not the queues
needed for multiple stations to be sanely supported. Repeated tests of the 802.11e mechanism shows it to be poorly
suited for a packet aggregation world. By reducing the exposed QoS queue to one, we can instead expose a per-
station queue (including a multicast queue) and manage each TXOP far more sanely.

There are a few other options as to what layer this sort of rework goes into. Given the current structure of the
mac80211 stack, it may be that all this work (exposure of the station id), has to take place at that layer, rather than
the higher level qdisc layer. Basic support for this (no code!) landed in the linux kernel in March, 2015

● MU-MIMO support
Nearly all of the changes above have potentally great benefit in a MU-MIMO world, and are in fact, needed in that
world. Regrettably none of the major chipset makers nor router makers seem to be co-ordinating on a standard api
structure for doing this right, and it is hoped that by finding and targetting at least one MU MIMO chipset that progress
will be made.

Submission Slide 34

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Adding AQM and Fair Queuing
● Codel

– While codel appears to be a great start in managing overall queue length, it is
apparent that modifications are needed to manage txops rather than packets, and
the parking lot half duplex topology in wifi leads to having to manage the target
parameter (at least) as a function of the number of active stations, and closer
integration into minstrel for predictive scheduling seems needed also.

● fq_codel
– A perhaps saner approach than a stochastic hash is merely to attempt to better

"pack" aggregates with different flows whenever possible, taking into account loss
patterns, etc. Using a deterministic per-station hash and setting aside 42 buckets
for each station is not a lot of overhead.

● Cake's algorithms
– Improvements across the board in memory use, cpu utilization, and efficiency –

but they are presently at the wrong layer of the wifi stack!

Submission Slide 35

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Sort on dequeue
An aggregate of packets arrives and is decoded all at once, and then delivered in FIFO order at a high rate (memory
speeds) to another device, usually ethernet. However that high rate is often still too slow for a fq_codel qdisc attached
to that ethernet device to actually do any good, so it would be better to sort on the dequeue (of up to 42 packets),
then deliver them to the next device.

We believe that if the delivery is sorted (fair/flow queued), that more important packets will arrive first elsewhere and
achieve better flow balance for multiple applications.

Multiple chipsets deal with packet aggregation in different ways, as does firmware - some can't decode any but the
entire aggregate when encrypted, for example, they arrive as a binary blob, and there are numerous other chipset
and stack specific problems.

Submission Slide 36

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Remove Reorder Buffers

● The linux tcp/ip stack can handle megabytes of
packets delivered out of order. So can OSX.
Windows can't. We don't care.

● In the quest for low latency, a few out of order
packets shouldn't matter.

● When we can identify flows, clearly, we can do
a better job...

Submission Slide 37

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Station improvements?
While many of the above improvements also apply to stations,
the benefits are more limited. The overall approach should be to
do better mixing and scheduling of the aggregates that a station
generates, and to hold the queue size below 2 full aggregates
whenever possible. Further improvements in station behavior
include predictive codel-ing for measuring the how and when
EDCA scheduling opportunities are occurring, and so on.

The primary focus is on APs, since that's where most of the
problems are, today.

Submission Slide 38

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Some details on CoDel & Fq_CoDel

Various talks:
http://www.bufferbloat.net/projects/cerowrt/wiki/Bloat-videos

ACM Queue
http://queue.acm.org/detail.cfm?id=2209336

Internet Drafts:
https://datatracker.ietf.org/doc/draft-nichols-tsvwg-codel/
http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00

Source Code in Linux 3.6 and later

https://datatracker.ietf.org/doc/draft-nichols-tsvwg-codel/

Submission Slide 39

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Introducing Kathie Nichols and Van Jacobson's
CodelCodel algorithm

● Measure the latency in the queue, from ingress to egress, via timestamping on entry and
checking the timestamp on exit.

● When latency exceeds target, think about dropping a packet

● After latency exceeds target for an interval, drop a packet at the HEADHEAD of the queue (not the
tail!)

● If that doesn't fix it, after a shorter interval (inverse sqrt), drop the next packet sooner, again, at
the HEAD.

● Keep decreasing the interval between drops per the control law until the latency in the queue
drops below target. Then stop. Save the value and increase it while no drops are needed.

● We start with 100ms as the interval for the estimate, and 5ms as the target. This is good on the
world wide internet

● Data centers need much smaller values.

Submission Slide 40

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Submission Slide 41

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

FQ_Codel Principles

● HEAD DROP, not tail drop.

● Fill the pipe, not the queue

● Queues are shock absorbers

● What matters is the delay within a flow.

● Shoots packets in elephant flows after they start accumulating
delay. Don't shoot anything else!

● Provide better ack clocking for TCP and related protocols

● Let smaller, sparser streams, like VOIP, & DNS slip through

Submission Slide 42

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

FQ_Codel starts with DRR Fair
Queuing, flows by quintuple

Submission Slide 43

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Adds optimizations for sparse
streams, which almost eliminates

the need for prioritization

Submission Slide 44

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

And given codel's measurements...
drops packets from the HEAD of the
queues when things get out of hand

Submission Slide 45

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

fq_codel's short signaling loop
and better mixing

● Increases network utilization
● Dramatically improves response time
● Improves interactive traffic enormously
● Makes for a more “shareable” home, small

business, or corporate network
● And is implementable, in everything that

needs it, in a few hundred lines of code.

Submission Slide 46

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

“FQ_Codel provides great isolation... if you've got low-rate
videoconferencing and low rate web traffic they never get dropped. A lot of
issues with IW10 go away, because all the other traffic sees is the front of

the queue. You don't know how big its window is, but you don't care
because you are not affected by it.

FQ_Codel increases utilization across your entire networking fabric,
especially for bidirectional traffic...”

“If we're sticking code into boxes to deploy codel,
don't do that.

Deploy fq_codel. It's just an across the board win.”

 - Van JacobsonVan Jacobson
IETF 84 Talk IETF 84 Talk

Submission Slide 47

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

What role for this work
 with battlemeshers?

Way faster wifi networks – especially with multiple
stations transmitting – after we get some new

kernel code done!
Hopefully more reliable wifi networks!

Shared development, modeling and testing
Improvements to hardware offload architectures

And
Better Wifi for everyone...

Hopefully.

Submission Slide 48

September 2014 doc.: IEEE 802.11-14/1265r0

 , Bufferbloat.net

Bufferbloat.net Resources
 Reducing network delays since 2011...

Bufferbloat.net: http://bufferbloat.net
Email Lists: http://lists.bufferbloat.net (codel, bloat,
cerowrt-devel, etc)

 IRC Channel: #bufferbloat on chat.freenode.net
 Codel: https://www.bufferbloat.net/projects/codel
 CeroWrt: http://www.bufferbloat.net/projects/cerowrt
 Other talks: http://mirrors.bufferbloat.net/Talks

 Jim Gettys Blog: http://gettys.wordpress.com
 Talks by Van Jacobson, Gettys, Fred Baker, others:
 http://www.bufferbloat.net/projects/cerowrt/wiki/Bloat-
videos
 Netperf-wrapper test suite:
 https://github.com/tohojo/netperf-wrapper

http://bufferbloat.net/
http://lists.bufferbloat.net/
http://www.bufferbloat.net/projects/cerowrt/wiki
http://mirrors.bufferbloat.net/Talks
http://gettys.wordpress.com/
https://github.com/tohojo/netperf-wrapper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

