

Interoperability + Diversity == Growth

z

Overcoming silos

What is NetJSON?

data interchange format
designed for networking software

based on JSON
JavaScript Object Notation

(RFC7159)

Dynamic routing protocols
(eg: olsrd, batman-adv)

Network databases
(A.K.A. node-db)

Monitoring tools

Firmwares / OS
(eg: OpenWRT, Raspbian)

What kind of networks?

Community networks!

Also...

Municipal wif

Research (eg: confne)

ISP (innovative ones)

WTF are you talking about?

Show us some examples!

“NetworkGraph”
https://github.com/interop-dev/json-for-networks/blob/master/examples/network-graph.json

https://github.com/interop-dev/json-for-networks/blob/master/examples/network-graph.json
https://github.com/interop-dev/json-for-networks/blob/master/examples/network-graph.json

“DeviceConfguration”
https://github.com/interop-dev/json-for-networks/blob/master/examples/device-confguration.json

https://github.com/interop-dev/json-for-networks/blob/master/examples/device-configuration.json
https://github.com/interop-dev/json-for-networks/blob/master/examples/device-configuration.json

Where did it came from?

Working with GeoJSON quite a bit...

A bit of history: 2013-2014

Geospatial data interchange format

geojson.org

What's GeoJSON

http://geojson.org/

{

 "type": "Feature",

 "geometry": {

 "type": "Point",

 "coordinates": [125.6, 10.1]

 },

 "properties": {

 "name": "Dinagat Islands"

 }

}

GeoJSON allows different GIS

Libraries to interoperate

>>> from django.contrib.gis.geos import GEOSGeometry

>>> geojson = '{"type":"Point","coordinates":

[125.6,10.1]}'

>>> GEOSGeometry(geojson)

<Point object at 0x3b66c70>

GeoJSON > GEOS

GeoJSON facilitates creating

Maps for webpages

https://gist.github.com/nemesisdesign/03c2e300704c401facd5

geojsonFeature = {

 "type": "Feature",

 "geometry": {type":"Point",coordinates": [125.6,

10.1]},

 "properties": { name": "Dinagat Islands" }

}

// create a web map with one line of code!

L.geoJson(geojsonFeature).addTo(map);

Leaflet.js

GsoC 2014: netengine
http://github.com/ninuxorg/netengine

We need some standard JSON!

A bit of history: 2014

http://github.com/ninuxorg/netengine

started working on the

frst drafts of NetJSON

October 2014

But... why?

ever tried to develop software
for heterogeneous networks?

Vendors don't care about
interoperability

FOSS projects
seem too busy to care either

No standard way to extract
and parse data

SILOS
+

VENDOR LOCK-IN
=

VERY SLOW INNOVATION

We can do better than this.

We can achieve
interoperability

We can create an
ecosystem

We can foster
growth

AHAH, growth … but how?

Oh yeah...

Easily import/export/deploy
device configurations

Understand & visualize
network topology

ANY ROUTING PROTOCOL

Small libraries developed by
different communities

written in
different languages

can interoperate

Develop the new cool thing...

And anybody can start
using it straightaway!

ME GUSTA

Current implementations?

OLSR Network Framework
NetJSON info plugin

http://www.olsr.org/mediawiki/index.php/NetJson_Info_Plugin

netdiff
“calculate difference of network topologies”

github.com/ninuxorg/netdiff

netengine-utils
“utilities for parsing output of common
shell utilities like ifconfg and iwconfg”

github.com/ninuxorg/netengine

http://netengine.readthedocs.org/en/latest/topics/netengine-utils.html#ifconfig-netjson-option
http://github.com/ninuxorg/netengine

We are working on it...

Roadmap

1. Moaar implementations

nodeshot
“crowdmapping for community networks”

github.com/ninuxorg/nodeshot

https://github.com/ninuxorg/nodeshot

Javascript d3 library
visualize “NetworkGraph” objects
(topology of any routing protocol)

2. Moaar feedback

3. Integrate feedback

4. Freeze specification

5. JSON Schema

6. Validator

7. RFC

Want to help out?

1. read the spec
(10-15 mins max)

2. implement netjson

3. send feedback

netjson.org
github.com/interop-dev/json-for-networks

mailing list interop-dev

Find more about NetJSON

http://netjson.org/
https://github.com/interop-dev/json-for-networks
https://lists.funkfeuer.at/mailman/listinfo/interop-dev

Why so much interest in interoperability?

Common NodeDB effort

Didn't go well
Different communities have different needs.

A bit of history: 2011

Do we have what we hoped for?

Fast forward

imho: NO

Nikolas is not proud of us

Slow progress

Reasons?

Fragmentation and

duplication of efforts

Reasons?

Very different software

Not interoperable

Reasons?

Developers interested in a specific
feature are discouraged

by complexity

experience has taught me

Nor they will be able

to contribute without putting up

a huge (and unlikely) amount of effort

How to remediate?

Could be a step in the right direction

But it will take time

netjson

“Now is better than never”

What can we do?

Extract key features in libraries

Small
Reusable

Standalone
Well documented

Should focus on one problem

(or very few related problems)

And solve it well

Aka: “the Unix philosophy”

Should encourage contributions
by clearly explaining

“how to contribute”

“Simplicity is beautiful”

One problem is...

easier to get right

A small library is...

easier to maintain

A small library is...

easier to document

A simple library is...

easier to use and integrate

A simple library is...
more likely to receive contributions

A standalone library can...

Be used by a wider range of ppl

Such a library will result in...

Better and longlived software

Such a library will also...
Attract interest to your main project

Real world examples

nodeshot.org

What was wrong with it?

- Too many features

- Hard to contribute

- Modules not standalone

Then we started extracting

and simplifying

netdiff
“calculate difference of network topologies”

github.com/ninuxorg/netdiff

quick netdiff demo

python-geojson-elevation
proxy to Google Elevation API

which returns GeoJSON
github.com/ninuxorg/python-geojson-elevation

https://github.com/ninuxorg/python-geojson-elevation

django-rest-framework-gis
Geographic add-ons for Django Rest Framework

In short: GeoJSON restful API (read/write)
github.com/djangonauts/django-rest-framework-gis

https://github.com/djangonauts/django-rest-framework-gis

django-hstore
PostgreSQL HStore support for Django

github.com/djangonauts/django-hstore

https://github.com/djangonauts/django-hstore

Django 1.8 ships HStoreField
which is a simplifed feld based on django-hstore

ref: postgres.mjtamlyn.co.uk/launch.html

http://postgres.mjtamlyn.co.uk/launch.html

A few more libraries:

django-rest-framework-hstore
netengine

Why U no provide some data?

Ok, ok, let's talk about data

nodeshot
vs

extracted features (summed)

contributions & downloads

Nodeshot: 13

Libraries: 44

Pull request (last 6 months)

3x

Nodeshot: 324

Libraries: 25199

PyPi downloads (last month)

78x

Nodeshot: 95

Libraries: 1392

Github clones (last month)

14x

Nodeshot: 14

Libraries: 471

Github unique clones (last mo)

33x

Nodeshot: 1100

Libraries: 2385

Github page views (last month)

2x

Nodeshot: 128

Libraries: 635

Github unique visitors (last mo)

5x

usage metrics of libraries
(summed up together)

have an average

22x increase
compared to nodeshot

Abraham approves

now immagine...

if all those features were
stuffed into nodeshot...

would we still get the same

amount of overall
usage metrics?

I don't think so.

usage metrics help you
to understand

If you are on the right path

Why usage metrics matter?

Let's sum up

What you
SHOULD NOT

be doing

Do not stuff too many features

in a single huge project

Do not mix logic of

core features

with web framework code

(eg: django, flask, web2py)

Do not wait to achieve

perfection before releasing

What you
SHOULD
be doing

Extract key features

In standalone, small, reusable

libraries

Contribute to

existing projects

when possible

#writethedocs

In english!

provide a way

to get in touch

release early

release often

find ways for others

to know about these libraries

listen to feedback from

occasional contributors

Diversity is HEALTHY

different communities
build

different solutions
according to their needs

but...
the low level implementations

can be shared across
projects

We are already
doing that with

Linux and OpenWRT

Let's do more of it

Interoperability

+ Collaboration

+ Diversity

= Growth

Let's thrive together

@nemesisdesign

twitter & github

Thank you

https://twitter.com/nemesisdesign

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

