
  

Interoperability + Diversity == Growth

z



  

Overcoming silos



  

What is NetJSON?

data interchange format
designed for networking software

based on JSON
JavaScript Object Notation

(RFC7159)



  

Dynamic routing protocols
(eg: olsrd, batman-adv)



  

Network databases
(A.K.A. node-db)



  

Monitoring tools



  

Firmwares / OS
(eg: OpenWRT, Raspbian)



  

What kind of networks?

Community networks!



  

Also...

Municipal wif

Research (eg: confne)

ISP (innovative ones)



  



  

WTF are you talking about?

Show us some examples!



  

“NetworkGraph”
https://github.com/interop-dev/json-for-networks/blob/master/examples/network-graph.json

https://github.com/interop-dev/json-for-networks/blob/master/examples/network-graph.json
https://github.com/interop-dev/json-for-networks/blob/master/examples/network-graph.json


  

“DeviceConfguration”
https://github.com/interop-dev/json-for-networks/blob/master/examples/device-confguration.json

https://github.com/interop-dev/json-for-networks/blob/master/examples/device-configuration.json
https://github.com/interop-dev/json-for-networks/blob/master/examples/device-configuration.json


  

Where did it came from?



  

Working with GeoJSON quite a bit...

A bit of history: 2013-2014



  

Geospatial data interchange format

geojson.org

What's GeoJSON

http://geojson.org/


  

{

    "type": "Feature",

    "geometry": {

        "type": "Point",

        "coordinates": [125.6, 10.1]

    },

    "properties": {

        "name": "Dinagat Islands"

    }

}



  

GeoJSON allows different GIS

Libraries to interoperate



  

>>> from django.contrib.gis.geos import GEOSGeometry

>>> geojson = '{"type":"Point","coordinates":

[125.6,10.1]}'

>>> GEOSGeometry(geojson)

<Point object at 0x3b66c70>

GeoJSON > GEOS



  

GeoJSON facilitates creating

Maps for webpages



  

https://gist.github.com/nemesisdesign/03c2e300704c401facd5


  

geojsonFeature = {

    "type": "Feature",

    "geometry": {type":"Point",coordinates": [125.6, 

10.1]},

    "properties": { name": "Dinagat Islands" }

}

// create a web map with one line of code!

L.geoJson(geojsonFeature).addTo(map);

Leaflet.js



  

GsoC 2014: netengine
http://github.com/ninuxorg/netengine

We need some standard JSON!

A bit of history: 2014

http://github.com/ninuxorg/netengine


  

started working on the

frst drafts of NetJSON

October 2014



  

But... why?



  

ever tried to develop software
for heterogeneous networks?



  



  

Vendors don't care about 
interoperability



  

FOSS projects
seem too busy to care either



  

No standard way to extract
and parse data



  

SILOS
+

VENDOR LOCK-IN
=

VERY SLOW INNOVATION



  

We can do better than this.



  

We can achieve
interoperability



  

We can create an
ecosystem



  

We can foster
growth



  

AHAH, growth … but how?

Oh yeah...



  

Easily import/export/deploy
device configurations



  

Understand & visualize
network topology

ANY ROUTING PROTOCOL



  



  

Small libraries developed by
different communities

written in
different languages

can interoperate



  

Develop the new cool thing...

And anybody can start
using it straightaway!



  
ME GUSTA



  

Current implementations?



  

OLSR Network Framework
NetJSON info plugin

http://www.olsr.org/mediawiki/index.php/NetJson_Info_Plugin


  

netdiff
“calculate difference of network topologies”

github.com/ninuxorg/netdiff



  

netengine-utils
“utilities for parsing output of common
shell utilities like ifconfg and iwconfg”

github.com/ninuxorg/netengine

http://netengine.readthedocs.org/en/latest/topics/netengine-utils.html#ifconfig-netjson-option
http://github.com/ninuxorg/netengine


  

We are working on it...



  

Roadmap



  

1. Moaar implementations



  

nodeshot
“crowdmapping for community networks”

github.com/ninuxorg/nodeshot

https://github.com/ninuxorg/nodeshot


  

Javascript d3 library
visualize “NetworkGraph” objects
(topology of any routing protocol)



  

2. Moaar feedback



  

3. Integrate feedback



  

4. Freeze specification



  

5. JSON Schema



  

6. Validator



  

7. RFC



  



  

Want to help out?



  

1. read the spec
(10-15 mins max)



  

2. implement netjson



  

3. send feedback



  



  

netjson.org
github.com/interop-dev/json-for-networks

mailing list interop-dev

Find more about NetJSON

http://netjson.org/
https://github.com/interop-dev/json-for-networks
https://lists.funkfeuer.at/mailman/listinfo/interop-dev


  

Why so much interest in interoperability?



  

Common NodeDB effort

Didn't go well
Different communities have different needs.

A bit of history: 2011



  

Do we have what we hoped for?

Fast forward



  

imho: NO

Nikolas is not proud of us



  

Slow progress

Reasons?



  

Fragmentation and

duplication of efforts

Reasons?



  

Very different software

Not interoperable

Reasons?



  



  

Developers interested in a specific 
feature are discouraged

by complexity

experience has taught me



  

Nor they will be able

to contribute without putting up

a huge (and unlikely) amount of effort



  

How to remediate?



  

Could be a step in the right direction

But it will take time

netjson



  

“Now is better than never”



  

What can we do?



  

Extract key features in libraries

Small
Reusable

Standalone
Well documented



  

Should focus on one problem

(or very few related problems)

And solve it well

Aka: “the Unix philosophy”



  

Should encourage contributions
by clearly explaining

“how to contribute”



  



  

“Simplicity is beautiful”



  

One problem is...

easier to get right



  

A small library is...

easier to maintain



  

A small library is...

easier to document



  

A simple library is...

easier to use and integrate



  

A simple library is...
more likely to receive contributions



  

A standalone library can...

Be used by a wider range of ppl



  

Such a library will result in...

Better and longlived software



  

Such a library will also...
Attract interest to your main project



  

Real world examples



  

nodeshot.org



  



  

What was wrong with it?

- Too many features

- Hard to contribute

- Modules not standalone



  

Then we started extracting

and simplifying



  

netdiff
“calculate difference of network topologies”

github.com/ninuxorg/netdiff



  

quick netdiff demo



  

python-geojson-elevation
proxy to Google Elevation API

which returns GeoJSON
github.com/ninuxorg/python-geojson-elevation

https://github.com/ninuxorg/python-geojson-elevation


  



  

django-rest-framework-gis
Geographic add-ons for Django Rest Framework

In short: GeoJSON restful API (read/write)
github.com/djangonauts/django-rest-framework-gis

https://github.com/djangonauts/django-rest-framework-gis


  

django-hstore
PostgreSQL HStore support for Django

github.com/djangonauts/django-hstore

https://github.com/djangonauts/django-hstore


  

Django 1.8 ships HStoreField
which is a simplifed feld based on django-hstore

ref: postgres.mjtamlyn.co.uk/launch.html

http://postgres.mjtamlyn.co.uk/launch.html


  

A few more libraries:

django-rest-framework-hstore
netengine



  

Why U no provide some data?



  

Ok, ok, let's talk about data

nodeshot
vs

extracted features (summed) 

contributions & downloads



  

Nodeshot:   13

Libraries:    44

Pull request (last 6 months)

3x



  

Nodeshot:   324

Libraries:    25199

PyPi downloads (last month)

78x



  

Nodeshot:   95

Libraries:    1392

Github clones (last month)

14x



  

Nodeshot:   14

Libraries:    471

Github unique clones (last mo)

33x



  

Nodeshot:   1100

Libraries:    2385

Github page views (last month)

2x



  

Nodeshot:   128

Libraries:    635

Github unique visitors (last mo)

5x



  

usage metrics of libraries
(summed up together)

have an average

22x increase
compared to nodeshot 



  

Abraham approves



  

now immagine...

if all those features were
stuffed into nodeshot...

would we still get the same 

amount of overall
usage metrics?



  

I don't think so.



  

usage metrics help you
to understand

If you are on the right path

Why usage metrics matter?



  

Let's sum up



  

What you
SHOULD NOT

be doing



  

Do not stuff too many features

in a single huge project



  

Do not mix logic of

core features

with web framework code

(eg: django, flask, web2py)



  

Do not wait to achieve 

perfection before releasing



  

What you
SHOULD
be doing



  

Extract key features

In standalone, small, reusable 

libraries



  

Contribute to

existing projects

when possible



  

#writethedocs

In english!



  

provide a way

to get in touch



  

release early

release often



  

find ways for others

to know about these libraries



  

listen to feedback from 

occasional contributors



  

Diversity is HEALTHY



  

different communities
build

different solutions
according to their needs



  

but...
the low level implementations

can be shared across 
projects



  

We are already
doing that with

Linux and OpenWRT



  

Let's do more of it



  

Interoperability

+ Collaboration 

+ Diversity

= Growth



  

Let's thrive together



  



  

@nemesisdesign

twitter & github

Thank you

https://twitter.com/nemesisdesign
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